WIinPOS

Signal Processing Package

Programmer’s Guide

Edition 3.0

© 2010 RPE «Mera»

Table of contents

Table of contents

Table of contentsccoviiiimsiiimsinsi s 3
About this GUIde ...ccuureeumrmmsmmmmsimmmsssmsssimmasimmssssmnssmrnssmnnssrasssrnns s 5
Structure of the GUIde......covvviiiiiicic s 5
CONVENLIONS . iiiiiir et e e e eaaas 6
Part 1. Introduction.......ccommeesmmmmsimmmsmmsmssmsessmnssssnnssssnsssssssssnnsssnnsssnnnas 7
WinPOS application StruCtUreciiviiiiiiiiicccer e e 7
Part 2. Application NOtEScc.cimiiimimmesirmer e s s nanss 9
VB S I P ettt 9
D71 o] o U 10
APPIICALIONS .. 10
18T B 0 PP 11
Creating a plug-in step by stepoooovviiiiiiii 11

L@ 10T g 0T = PR 15
Part 3. WInPOS interfacescccoummmmimmmmnmnmsmmmmsmnssssmssssmssssssssssnassnes 17
IWINPOS ... e e e s e e s e e e e e e ra s 18
Opening and saving of data filescccceeevriiiiiiccir e, 18
Access t0 WINPOS ObJECES ...vvivrrrrrrrrrrrrrrnrrenrirnrrssinnsrssrirerrnnrssnensnnaanes 19
Control of WIinPOS enviroNmMENTcccevviiiiiiiiieeiieeiceeseeeeeeereeeeeeeeeeeeeeeeneennee 21
Interoperation With plug-iNS.........oooiiiiiiiiii 22

State diSplaying.......ccerriiiiiii e 25
Documenting and printing the results........ccccceiviiiiiiiiiiini e, 25
VBScript. Operation with binary data filescccoomiiiini e 26
VBSCHpt. DEDUGQGING...vvevveerreerrerrreerieeiineiiesrissiinsrssnrsssnsss s 29
IWPGIaPNS. .o i 29

| oSy e o | PP 39
IWPUSML. ettt et e e s e e a e e e s e e s e rr e e eaanaes 42
IV POPEIALOr .. ittt 44
IWPNOGE ...cevieiiieeie et er e e rrnan 46
Part 4. Interfaces of plug-inS......ccciummmmmimmmmmesiinmnmssimnmssssmmnsssnanas 51
0T o] o | o PPN 51

I PIMPOI et e e 52
LA o = 0T i TP 53
Part 5. The call of algorithmscciriiinrinnsins . 55

WinPOS. Programmer’s Guide

Procedures of a simplified call of algorithms........c....ccooviiiiiiiiiiinnnnnn, 55
Algorithms on basis of the Fast Fourier Transformation (FFT)............... 56
PN 010 IR o =Tou ¢ U {3 o DO PRSP 57
OCtaVve SPECLIUM ...uuiiiiiiii 57

L@ 0TI o= 0 o U o 58
COMPIEX SPECEIUM ...uiiieeeeeiie s e s e e er e s e e s s e e e e e r e e s s e e rnnnaa e e e e s eennnan 58
Coherence function. Non-coherence functionccccceveiiiiniinssnssssssssssssnns 58
Transfer fUNCHON ... e 59
Spectrum transformationcccccccirinr s 59
Filtering algorithms.........coiiiiii e, 60
Infinite impulse response filtering (IIR).......ceeeeiiiiiiiiimmererine e 60
Finite impulse response filtering (FIR).......ccuverreerrimmmmmeimiiieiiiiiiinniinsinnneenns 60
Median FilteriNg.....cuuuuiieii e e 61
Operations 0N SIgNAIS..........uiei e e ee e e e e e e e e e e eeees 62
Differentiationuuuueeerrerrrerrieriirrrr e —————————————————— 62
INtEgration......ccuvuiiiiiicciir 62
NOrmMAliZationvvveeiiiiirr 62
(0= 0175 T PPN 63
ArithmetiC OPErationceeveiiiiiiiiiiriiee e 63
Taking the logarithm ... 63
RESAMPIING .. e 63
Hilbert transformation.........uueueeerrerrrerrrrrrierirerrrr . 64
ENVEIOPE. ..t 64
Investigation of SIgNAISciviuiiiiiii i 65
Probabilistic CharaCteriStiCS. . uuuuuurrrrrrrrrrrrrrrrrrerrrnrrnrrierrrerrerrr—————— 65
Probability denSityooi i 65
AUtO Correlation.........ooooeiiiiii 65
Cross COMTElationuuveeiiiiiiniiiiir 66
ParametriC graph......cuueeeeeeereriererieerieeirerrrerrerre e ——————— 66
Part 6. Embedded script editor..........ccciinmmmmninmmeeesinnmessmnmessnnnas 67
EdIiting MOde....ccuniiiii i 69
Debugging MOAE......uciiiii i 70
Debugging PANEIS........uuurerrruriieriieriiriiiriirr e ———————————————————— 71
(@0] 0110) [PP P PP PPPPPPPPPP 71
BreakpOiNtS....ccvviiiiiiiiiiiiiiiiiiiiiei e 71
(oo | IV = = o] 71
0 =11 0] N 72
(0= 11 = ol QP UPPPPN 72
AppendiX. SAMPIES ...ccieirmirmirmsiinsrrn s 73
Index of methods........cimeeiimimmsiininessiin 79

About this Guide

About this Guide

The Programmer's Guide includes a detailed description of the WinPOS application
interface (API), examples and recommendations of the software writing. A separate
part of this Guide covers the work with the built-in script editor.

This Guide is intended for WinPOS users familiar with the programming basics.
Script writing (Visual Basic Script or VBS) does not demand high programming
skills of a user. However, knowledge of the object-oriented programming (OOP)
concept and the basics of OLE and ActiveX can be useful for development of plug-
ins.

Structure of the Guide

Part 1 covers features and application areas of the WinPOS application interface
(API). The application internal structure is described.

Part 2 shall help in selection of programming language and environment depending
upon sophistication of a particular problem.

Part 3 contains a detailed description of WinPOS object interfaces, properties and
methods.

Part 4 contains descriptions of the simplified algorithm calls.
Part 5 covers WinPOS embedded script editor and debugger.

Appendix contains samples and descriptions of source texts of sample scripts,
routines and plug-ins.

Index of methods can be found at the end of the Guide.

WinPOS. Programmer’s Guide

Conventions

The following conventions are used in the present Guide for the reader's

convenience.

<>

File

Script

signal

®

Angle brackets indicate function keys and their combinations, e.g.,
<Ctrl>

The symbol — 1is used to divide the menu levels. E.g.,
File—Open... means that the item Open... shall be selected in the
File menu.

Bold denotes the names of menu items or dialog box elements that
can be selected and enabled by mouse button click.

Italic denotes the names of the Guide chapters, WinPOS windows.

Monospace font denotes text or characters to be entered from the
keyboard, function prototypes, parameter names, and examples.

Important information, caution or recommendation.

The following graphic conventions are used in the interface descriptions:

o Property,
.@ - Method,
- Return value.

Part 1. Introduction

Part 1. Introduction

WinPOS (versions Professional and Expert) lets creation of own signal processing
algorithms, automation of the input signal processing from the input file selection to
the processing output documenting.

The application areas of the WinPOS application programming interface (API) are:

e Cyclic processing of huge data,

e Calculations by highly customized formulae,

e Automated searching of specific values in the results of calculations,
e Program generation of, e.g., reference signals with pre-set properties,
e Generation of template reports, tables,

e Data reading and writing in custom formats, etc.

WinPOS application structure

WinPOS is a modular application. WinPOS software model is based upon the object
oriented programming (OOP) concept. The WinPOS object can be conditionally
classified by the following functionality groups:

e User interface implementation objects (menu, toolbars, windows),

o Graphic subsystem objects (pages, graphs, lines),

e Data access objects (signals, data files),

e Structured data storage objects (WinPOS object tree),

e Mathematical algorithm implementation objects (operators).
Since the most important objects are accessible from the outside, the WinPOS
features can be employed by the software as well as by the user interface. Hence, the
users are able to automate the solution of frequent problems not envisaged in course
of the application development by some programming tool. Such objects are

commonly called as ActiveX, and the application — as OLE server. The WinPOS
objects represent the interfaces briefly described below.

WinPOS. Programmer’s Guide

1 Fle Algorithms ibroanalysis

View Scipt Tooks Window Help
D& H B & &8 -« » 4R b Lk T

h& = § Tt tale - o[18| S

IWIinPOS D

ER=RE s

= al Semplel mera
-1

- Th
fo- Tacho
- 2y

IWPGraphs

[E3KA

B 0

15 cex,

D1+

Name [Fs [& [cax[cu curi o]
w000 ooz - . .

i [¥e X [wim e v [Lom

0 7279 0.000- 182 -10.456 13.298 728

5231 Wb

IWinPOS is the main interface
of the application. All
interactions with the
application are performed via
this interface, since the access
to the object tree s
implemented via this interface
in addition to the WinPOS
graphic element access
(graphic subsystem is
accessible by GraphAPI ()
call).

WinPOS object tree is a structured data storage. Separate tree elements are
represented in the windows Signal Tree (“\Signals”), Graph Tree (‘“\Graphs”),
Algorithms (“\Operators”) or on the panels Signal Manager.

Each object (node, «leafy of the tree) can be accesses via the IWPNode interface.

The method GetObject ()

lets to obtain any WinPOS object from those

represented in the tree. Cyclic search of objects is also implemented by the

L——_I[:l Graphs ©
BB 1a
1a

=[] Signals

EI@ Operators

------ wa Cross spectium

------ @ Crozg-comrelation function

g Rezampling
[+ e WibroOpers

IWPNode

[=1-fii] Samplel.merae—— IWPUSML

g At spectrume—— [WPOperator

IWPNode interface.

One of the WinPOS objects
can be associated with the tree
node:

e Page, graph, line
(accessible via the
IWPGraphs interface),

e USML or MERA format
file (accessible via the
IWPUSML interface),

e Signal (IWPSignal),
e Operator IWPOperator).

Part 2. Application notes

Part 2. Application notes

WinPOS provides the interfaces enabling the user to create own plug-ins or
applications operating with the data and algorithms of WinPOS almost in any
modern programming environment. Microsoft Visual Basic Script and Borland
Delphi are selected for examples. VBScript is included into the Microsoft Windows
package, requires no separate compiler, and simple script editing environment is
included into WinPOS. Delphi deserved the fame of the most convenient
environment for rapid application development (RAD) and ideally suits for creation
of small particular applications.

The pros and contras of script and application programming by the above mentioned
tools are presented below.

VBScript

@ No compiler or separate development environment is necessary,

@ Programming basics only are required,

@ Application with own customized dialogs or forms cannot be created.
Delphi

@ Dialogs and forms for any customization can be created, numerous
Delphi components can be used, specific reports can be generated,

@ Development of sophisticated own data processing algorithms is easy,

Installation of Borland Delphi and the respective programming skills
are necessary.

Hence, VBScript is more suitable for small automation scripts of WinPOS operation
or simple algorithms but is less convenient for huge data processing, and Delphi
should be applied for writing of own fast processing algorithms and creation of
applications which require additional customization or generation of specialized
reports.

The methods of joint execution of scripts, applications, plug-ins and WinPOS are
discussed below.

VBScript

The easiest way of creation of own script by VBScript is to copy a sample from
References or from the disk, insert this sample to the Script editor (menu Script) and
then modify this sample by addition of the necessary functionality. The Script editor

WinPOS. Programmer’s Guide

control elements are described in the Part 5. Embedded script editor. The resulting
script can be executed in several ways:

e From the script editor — Execute program (F5),

e From the WinPOS main window, Execute script menu or by script hot
button in Toolbar,

e From the command line (“winpos.exe myscript.wps”).

A classical VBScript sample is shown below:

sub main
DebugPrint “Hello, world!”
end sub

The line «Hello, world!» will be printed in the debugging print window of the Script
editor (this sample should be enabled by the first method only, otherwise no
debugging print is possible).

Delphi

RAD Delphi allows creation of the applications addressing the objects and methods
of WinPOS, and also development of plug-ins as dynamic link libraries (DLL). Such
plug-ins can be embedded into WinPOS. For example, the buttons calling the user
library functions can be easily added to the WinPOS toolbar.

Applications

The application (EXE-file) is able to access the WinPOS objects, their properties
and methods by creation of the proxy class as follows:

var WinPOS: TWinPOS;
WinPOS:= TWinPOS.Create (nil) ;

Further the WinPOS methods can be used:

// open USML by standard WinPOS dialog
FileName:= WinPos.USMLDialog() ;

Note! From the point of view of an application WinPOS is an out-of process server
server. That is, the WinPOS object methods are called with inevitable delays caused
by slow processors’ interaction. Hence, a separate application poorly suits the
creation of own algorithms which cyclically address the GetY signal methods or the

10

Part 2. Application notes

like. The first sample (sine generator) demonstrates this effect. At the same time, at
particular addressing to the signals or algorithms, the delays are almost negligible.
The plug-ins (see below) are more suitable for the tasks which demand constant
interaction with the WinPOS objects.

Plug-Ins

RAD Delphi allows creation of the applications addressing the objects and methods
of WinPOS, and also development of plug-ins as dynamic link libraries (DLL). Such
plug-ins can be embedded into WinPOS. For example, the buttons calling the user
library functions can be easily added to the WinPOS toolbar.

WinPOS will be a local server for such plug-in. Hence, the time delays will be
insignificant. The user algorithms will be almost as effective as the embedded ones.

The plug-in must contain COM-class with dual interface providing three methods:
Connect(), Disconnect() and NotifyPlugin(). At the start WinPOS calls the method
Connect() by passing the pointer to itself, and Disconnect() is called at the operation
end. Other messages are transferred by WinPOS by call of NotifyPlugin() with the
message code and parameters.

function Connect (const app: IDispatch): Integer;
function Disconnect: Integer;

function NotifyPlugin (what: Integer; var param:
OleVariant) : Integer;

At the starting WinPOS calls the method Connect() passing a pointer to itself, during
a shutdown Disconnect() is called, and WinPOS passes other messages, calling
NotifyPlugin () with the code and the parameters of the message.

WinPos uploads plug-ins on the list, saved in the system registry. An addition of the
plug-in into the list and a removing from the list conveniently to combine with the
registration procedures. For that it is necessary to overload DIIRegisterServer and
DllUnregisterServer.

Creating a plug-in step by step

1. Create a new library (DLL): File—New—Other...—ActiveX—ActiveX
Library.

2. Save the library: File—Save. Enter the library name in the saving dialog, for
example, “MyPlugin”, then press the Save button.

11

WinPOS. Programmer’s Guide

3. Create a new COM object:
Object. The dialog COM Object Wizard (Fig. 2.1) will be appeared.

File—New—Other...—ActivyX—COM

COM Object Wizard 3|l It 1nterface Selection Wizard o (=] 3]
Class Mame: |Myu bject Interface [Type Library [Wersion | Path 2]
IWPDIgChSignal WinPostb 11 C:\Program Files
- P WinPos.tb 11 C:\Program Files
Instancing: I Single Instance j IwPNode WinPos Hb 11 C:\Program Files..
IWPOb| WEBPOSTDLL 1.0 CAWINDOWS,
) IW/PObject WinPos.tb 11 C:\Progiam Files
Threading Model: IApanment IwFOperator WinPostlb 11 C:\Pragram Files...
14/POphanager b 1.1 C: I
- TWEPlugn 11
:mlpl?mer?ted IIW’F‘F‘Iugln P Signal 1
e IWPTree WinPos.tb 11 C:\Program Files...
. IWPUSHL WinPostb 11 C:\Program Files
Description: | 145D LBinding MSSOAP3ODLL 3.0 C:\Program Files
IWSDLMessage MSE0APZODLL 20 C:AProgram Files...
1W/SDLOperation mssoapl.di 10 C:\Program Files..
145D LOperation MSSOAP3ODLL 3.0 C:\Program Files... ™
Options 1 | Y
’]7 Inelude Thpe Libran ¥ | Mark interface Oleautomation ‘
Add Library
ak. | Cancel | Help |
oK | cencal | Help |
|Finished loading interfaces 4

Fig 2.1 COM Object Wizard

Fig 2.2 Interface Selection Wizard

e Enter the class name to the field Class Name.

o Press the button List. The dialog Interface Selection Wizard (Fig. 2.2)

will open.

e Choose the interface IWPPlugin (see. fig.) and press OK. The window
Type Library will open. Draw attention that the new library and the new
class are displaying on the left window part. The window can be closed,
and use View—Type Library to open it repeatedly.

4. Add required modules to the section uses of the initial library file (this is
MyPlugin.dpr here). Usually used: SysUltils, Classes, Consts, Windows,

ComServ, Registry.

5. Overload the function DIIRegisterServer, as shown below.

Here the second parameter of the method reg.writestring() is the appellation of a
new COM - object. It consists of new library names and the object witch are
divided by a point. These names are displayed on the left part Type Library

window.

12

Part 2. Application notes

function DllRegisterServer: hresult; stdcall;
var reg: tregistry;
buffer: array[0..255] of char;

begin
reg := tregistry.Create;
try
reg.rootkey := hkey local machine;

getmodulefilename (hinstance, buffer, 255);

reg.openkey (' \Software\MERA\Winpos\COMPlugins', True);

reg.writestring(string(buffer), 'MyPlugin.MyObject');
finally
reg.fFree;

end;
Result := comserv.dllregisterserver;

end;
6. Overload the function DllUnregisterServer, as shown below.

function DllUnregisterServer: hresult; stdcall;
var
reg: tregistry;

var
buffer: array[0..255] of char;
begin
reg := tregistry.Create;
try
reg.rootkey := hkey local machine;

getmodulefilename (hinstance, buffer, 255);

if (reg.openkey ('\Software\MERA\Winpos\COMPlugins',False))

reg.DeleteValue (string (buffer)) ;
finally
reg.fFree;
end;
Result := comserv.dllunregisterserver;
end;

then

7. Overload methods Connect(), Disconnect() u NotifyPlugin() (see Unitl.pas).

In the example cited below a new toolbar and a button on it are created in the
method Connect(). In the method NotifyPlugin() after pressing the button, a form

to which the control is inherited are created.

Create a form and draw an image for the button of the toolbar — this is bitmap
19x19 (it is possible to use the built-in resource editor Tools—Image Editor).

13

WinPOS. Programmer’s Guide

var ID Runl : Integer=0; // Command identifier
var bar ID : Integer; // Toolbar descriptor

function TMyObject.Connect (const app: IDispatch): Integer;
var hbmp:THandle;

begin
WP:=app as IWinPOS;
ID Runl := WP.RegisterCommand(); //Get the command Id
bar ID:=WP.CreateToolbar (); //Create toolbar

//Load button image
hbmp :=LoadBitmap (HInstance, 'TOOLBAR"') ;
//Create button
WP.CreatetoolbarButton(bar ID, ID Runl, hbmp,
'My action'#10'Do my action');
Result:= 0;
end;

function TMyObject.Disconnect: Integer;
begin

Result:= 0;
end;

function TMyObject.NotifyPlugin (what: Integer;

var param: OleVariant): Integer;
var cmdln : AnsiString;
begin
try
if HiWord(what)=ID Runl //Check the command Id
then
begin //Form creation

Application.CreateForm(TForml, Forml);
Forml.Show;
end
except
end;
Result:= 0;
end;

8. Compile the plug-in. Register it using regsvr32. Close and start WinPOS
again. A new panel with the call button of the plug-in should appear.

A registration and a cancel of a registration of plug-ins are carried out by the
standard Window tool.

regsvr32 myplugin.dll
regsvr32 /u myplugin.dll

14

Part 2. Application notes

The folder DelphiCommon (see. Appendix. Samples) contains the files
Winpos_ole TLB.pas and POSBase.pas.

Winpos_ole TLB.pas is created automatically and includes the descriptions of OLE-
interfaces WinPOS (the file is connected automatically at the inheritance of the
interface IWPPlugin).

POSBase.pas contains the functions of the type RunXXXX () simplified an access to
the algorithms WinPOS and a number of constants (a connect of this file can be
effective). See also Part 5. The call of algorithms.

Other tools

As stated above, in addition to VBScript and Delphi, other means can be used for
development of applications and plug-ins. The operation with such means requires
performance of the sequence aimed at generation of the respective program module
by the WinPOS Type Library (TLB).
In Borland C++ Builder, as in Delphi, the sequence is the following:
Project—Import Type Library...—[select winpos_ole]—Create Unit,
And in Microsoft Visual C++:
View—ClassWizard...—AddClass...—From a type library—[winpos.exe].

15

Part 3. WinPOS interfaces

Part 3. WinPOS interfaces

The majority of WinPOS objects can be manipulated by the interfaces listed below.

IWinPOS - Main application interface

IWPGraphs - Graphic subsystem interface

IWPSignal - Signal interface

IWPUSML - Batch file (USML and MERA) interface
IWPOperator | - Mathematically based algorithm call interface
IWPNode - WinPOS object tree element

The following chapters contain descriptions of the interface methods in ODL
(Object Description Language) notation. This notation is preferable for the OLE
interface description. The Table of type correspondence in different languages is

given below.

ODL Delphi VBSecript Description

BSTR String BSTR Symbol string

long Integer Variant Integer (32 nits)

short Smallint Variant Short integer (16 bits)

IDispatch* IDispatch IDispatch Pointer to the IDispatch derived interface
VARIANT BOOL |Boolean Variant Boolean (logic) variable

void [procedure]” | [sub]” "Void returning function, i.e., procedure
VARIANT OleVariant Variant Variable

17

WinPOS. Programmer’s Guide

IWinPOS

This is the main application interface allowing control of the WinPOS environment,
access to the object tree, data reading and writing, interaction with connected
modules, calling of documenting methods and debugging routines.

Properties

@' SelectedGraph
BSTR SelectedGraph

The name of selected graph in the WoinPOS graph tree. This property is
read only.

@ SelectedSignal
BSTR SelectedSignal

The name of selected signal in the WoinPOS signal tree. This property is
read only.

Methods
Opening and saving of data files

=% LoadUSML
IDispatch* LoadUSML (BSTR path)
Load USML or MERA file and place it to the WinPOS signal tree.

The object supporting IWPUSML interface
path File name
= SaveUSML

void SaveUSML (BSTR Name, BSTR FileName)
Store the WinPOS signal tree folder as USML or MERA file.
Name Full folder name in the WinPOS signal tree
FileName File name
=% LoadSignal
IDispatch* LoadSignal (BSTR path, long type)

18

Part 3. WinPOS interfaces

Load a binary or text data file and place the results to the WinPOS signal

tree.
The object supporting IWPSignal interface
path File name
type Data file type. The list of constant values is provided in the
Table below.
Data file type | Constant | Description
value
FT TextWi (3 Text (ASCI) file opened by setup
z
FT UChar 4 Unsigned integer array (1 byte)
FT INT16 5 Signed integer array (2 bytes)
FT WORD 6 Unsigned integer array (2 bytes)
FT INT32 7 Signed integer array (4 bytes)
FT Float 8 Real number arrays (4 bytes)
FT Double |9 Real number arrays (8 bytes)
FT XLS 10 Microsoft Excel table

=% SaveSignal
void SaveSignal (BSTR Name, BSTR FileName, long
type)
Save the signal as binary or text data file.
Name Full signal name in the WinPOS signal tree
FileName File name

type Data file type. The list of constant values is provided in the
description of LoadSignal method.

Access to WinPOS objects

=% CreateSignal, CreateSignalXY

IDispatch* CreateSignal (long type)
IDispatch* CreateSignalXY (long xtype, long ytype)

Create a new signal. CreateSignalXY() creates a signal with possibly
unequal X axis, the values can be set by the SetX() method. NOTE! If the
signal is created by CreateSignal(), the SetX() method makes no sense!

The object supporting IWPSignal interface
type Data signal type. The list of constant values is provided in the
table below. xtype, ytype — types of values for X and Y.

19

WinPOS. Programmer’s Guide

Data signal Constant | Description
type value

VT Il 16 Integer, 1 byte
VT UIl 17 Unsigned integer, 1 byte
VT I2 2 Integer, 2 bytes
VT UI2 18 Unsigned integer, 2 bytes
VT I4 3 Unsigned integer, 4 bytes
VT R4 4 Real, 4 bytes
VT R8 5 Real, 8 bytes

=3 Getlnterval

IDispatch* GetInterval (IDispatch* src, long start,
long count)

Return value is the signal representing the source signal interval. The
method is used for the source signal range processing.

The object supporting IWPSignal interface
src Source signal

start Start of interval, O .. (src.size-1)

count Number of values, 0 .. (src.size-start)

= GetOversampled

IDispatch* GetOversampled (IDispatch* src, double
freq)

A returnable virtual signal allows interpreting the data of the original
signal as if they were obtained with another sampling frequency. The new
values are interpolated linearly, the algorithm of the oversampling is not
called, and the filtration is not used. As a result is not recommended to
select a new frequency less than the original.

An object supporting the interface IWPSignal
src An original signal
freq A new frequency

= GraphAPI

IDispatch* GraphAPI ()
Obtain the graph subsystem interface.
The object supporting IWPGraph interface

20

Part 3. WinPOS interfaces

=% Link

IDispatch* Link (BSTR Path, BSTR Name, IDispatch¥*
Object)

Place the object to the WinPOS tree.

The object supporting IWPNode interface
Path Path in WinPOS tree
Name Object name
Object Object to be placed to the tree
=& Unlink

void Unlink (IDispatch* Object)

Remove the object from the tree

Object Object to be removed from the tree

=3 GetObject
IDispatch* GetObject (BSTR path)

Find object in the WinPOS tree by name.

Pointer to the requested object interface
path String, path in the WinPOS tree
=& GetNode

IDispatch* GetNode (IDispatch* Object)

Obtain position (so called mounting point, node) of the object in the

WinPOS tree.
The object supporting IWPNode interface
Object Object.

Control of WinPOS environment

=% USMLDialog
BSTR USMLDialog ()
Select USML or MERA file by the standard WinPOS dialog box.

21

WinPOS. Programmer’s Guide

Full file name

=% Refresh
void Refresh ()

Refresh all WinPOS windows. Recommended to be used after calling the
methods which modify the WinPOS status, such as Link().

=% DoEvents
void DoEvents ()

Process all events accumulated during the long task operation. This
procedure is used in the course of long calculations in order to avoid the
program hang-up. DoEvents() suspends the script performance and allows
the window message processing by WinPOS.

=% AddTextlnLog

void AddTextInLog (BSTR text,BSTR
exttext, VARIANT BOOL show)

Add text line to the log.

text Text line for the log
exttext Additional parameter line
show True, if the log window is to be represented; false, if not

Interoperation with plug-ins

The methods described in the present section provide the access to the control
elements of WinPOS environment (main window, toolbars, menu) and shall be used
for the plug-ins creation.

=% MainWnd
long MainWnd ()

This method returns the WinPOS main window handle which may be
necessary for the connected modules, if such modules have their own
windows and dialogs.

WinPOS main window handle

=% RegisterCommand

long RegisterCommand ()

22

Part 3. WinPOS interfaces

This method returns a unique number which can be used as a command
identifier.

Number, a unique code of command or event.

=% CreateToolbarN
long CreateToolbarN (BSTR name)
Create new toolbar.

Toolbar pointer
name Toolbar name. Is added to the menu “View”

=% CreatetoolbarButton

long CreatetoolbarButton(long bar, long command,
long picture, BSTR hint)

Add button-«tool» to the toolbar.

Non-zero if the button is successfully added, otherwise - 0

bar Toolbar pointer which can be obtained by CreateToolbar()

command Assigned command which can be obtained by
RegisterCommand ()

picture Button picture handle

hint Prompt text

=% ToolbarSetButtonStyle

void ToolbarSetButtonStyle (long bar, long command,
long nStyle)

Change the state of the toolbar button

bar Toolbar. See CreateToolbar()

command Assigned command. Cm. RegisterCommand ()

nsStyle Button style. Is used: 0 — normal button, 4 — button is
disabled.

=% ShowToolbar
void ShowToolbar (long bar, long visible)
Show or hide the toolbar.
bar Toolbar pointer which can be obtained by CreateToolbar()

23

WinPOS. Programmer’s Guide

visible 1 — show, 0 - hide

=% Createmenultem

long Createmenultem(long Command, long reserved,
BSTR text, long style, long picture)

Create a new menu item.

Non-zero if the menu item is successfully added,
otherwise - 0
Command Assigned command which can be obtained by

RegisterCommand ()

reserved Each byte of this number (if not equal to FF) represents a
submenu item of the present level, where to a new menu
item shall be added. For example: 0OXFFFF0301 - the 4™
submenu of the main menu, after the 2™ position (count

start - 0)
text Menu item
style Menu item style. Set to 0 for a typical menu item. The

style constant values are provided in the Table below.
picture Menu item picture handle. Used only if MF_BITMAP
style is installed.

Menu item style Value Menu item style Value
MEF ENABLED Oh MEF BITMAP 4h

MFEF GRAYED 1h MFE OWNERDRAW 100h
MF DISABLED 2h MFE POPUP 10h
MFE UNCHECKED Oh MEF MENUBARBREAK 20h
MF CHECKED 8h MEF MENUBREAK 40h
MF USECHECKBITMAPS 200h MEF UNHILITE Oh

MFEF STRING Oh MF HILITE 80h

=% RegisterimpExp

boolean RegisterImpExp (LPDISPATCH imp, LPDISPATCH
exp, LPCTSTR desc, LPCTSTR ext)

Register an import - export plug-in. In the window of the file WinPOS open

a new file type (parameter desc) will be added. See the description of

import - export interfaces.

true — if the operation was successful, false — otherwise
imp A pointer to the import interface
exp A pointer to the export interface

24

Part 3. WinPOS interfaces

desc A description of the files type

ext A file extension in format *. ext’. Example (Delphi):
RegisterImpExp(self, self, ' WAV files', "*wav');

State displaying

=% ProgressStart
void ProgressStart (BSTR comment, long max)

Create a progress indicator.

comment Line of a current state. For example, "Finding the
maximum"
max Maximum number of indicator steps

=% ProgressStep
void ProgressStep (long pos)
Set a progress indicator.
pos New position indicator: 0 .. max. If pos = 0, one step of
the indicator will be taken.
=» ProgressFinish
void ProgressFinish()

Hide a progress indicator.

Documenting and printing the results

=» Savelmage
boolean SavelImage (BSTR fname, BSTR comment)
Save the displayed graph page in file or buffer.

True if successful, otherwise false

fname File name. If the transferred string is empty — the image is
placed to the exchange buffer

comment Comment string. For example, «Fig.1 Source Levelsy. If an
empty string is set no comment is printed.

25

WinPOS. Programmer’s Guide

=% PrintPreview, Print

void PrintPreview (BSTR comment)

void Print (BSTR comment)

Print the displayed graph page. PrintPreview shows a print preview
window. Print - sends the file to printer using the current printer and page

settings.

comment Comment string. For example, «Fig.1 Source Levelsy.
If an empty string is set no comment is printed.

VBScript. Operation with binary data files

These methods extend the limited features of VBScript concerning operation with
binary files. These methods should not be used when working with Delphi, since
Delphi allows calling of the direct file handling functions.

=% FileOpen

BSTR FileOpen (long isOpen, BSTR ext, BSTR fname,

long flags, BSTR filter)

Open a standard file dialog and select the file name.

Full file name

isOpen true - file open dialog, false - file saving dialog

ext Default file extension

fname Initial file name

flags Flags for setting the outlook and behavior of the dialog.

Some useful flags are summarized in the Table below; other
flags are found in the file POSBase.pas and the references
(Description of OPENFILENAME).

filter Dialog filter set. For example:
"USML files|*.usm|All files| *.*||" — select .usm files or all

files.
Flag Value Description
OFN ALLOWMULTISELECT |200h Enable selection of several files
OFN_CREATEPROMPT 2000h If the user specifies a non-existing file, the dialog
box prompts creation of a new file with the
entered name.
OFN_FILEMUSTEXIST 1000h The field File name enables entering valid file

names only. If the flag is entered with incorrect
file name, a warning is issued. Used jointly with
OFN PATHMUSTEXIST.

26

Part 3. WinPOS interfaces

OFN_NOCHANGEDIR 8h Return the source value to the current folder if
the user changes folders when searching files.

OFN NONETWORKBUTTON 20000h | Remove the dialog button Network

OFN_NOREADONLYRETURN |8000h | The filed Read only is not selected; the returned
file is not in the copy-protected folder.

OFN_OVERWRITEPROMPT 2h The dialog Save as gives a warning message is
the file already exists. The user should confirm
the file overwriting.

OFN_PATHMUSTEXIST 800h The user is able to enter the valid path and file
names only. If an incorrect file name or path is
entered, a warning window appears.

=% OpenFile
long OpenFile (BSTR Path, long flags)

Open or create a new file.

File handle to be used by further calls (see the hFile
parameter)
Path File name (with path)
flags Access type. The values are provided in the Table
below.
Flag Value Description
READ WRITE 100h Open the file for read and write (GENERIC_READ |
GENERIC WRITE), 0 —read only (GENERIC READ).
SHARE_READ 1000h This file can be simultaneously opened as read only
(FILE_SHARE READ), 0 — for read and write
(FILE_ SHARE READ | FILE SHARE WRITE).

=» CloseFile
void CloseFile(long hFile)
Close file.
hFile File handle

= SeekFile
long SeekFile(long hFile, long Pos, long flags)

Change position of the file pointer.

New position of file pointer
hFile File handle
Pos Desirable position of the file handle

27

WinPOS. Programmer’s Guide

flags Flag of the file pointer movement. The values are
provided in the Table below.

Flag Value Description

FILE BEGIN 0 The file beginning is zero

FILE CURRENT 1 Zero — current position of file pointer
FILE END 2 Zero — end of file

=% ReadByte, ReadWord, ReadLong, ReadFloat, ReadDouble

VARIANT ReadByte(long hFile)
VARIANT ReadWord(long hFile)
VARIANT ReadLong(long hFile)
VARIANT ReadFloat (long hFile)
VARIANT ReadDouble (long hFile)

Read a value in the respective format from the binary file.

The value read from the file
hFile File handle

=% WriteByte, WriteWord, WriteLong, WriteFloat, WriteDouble

28

void WriteByte (long hFile, short Value)
void WriteWord(long hFile, long value)
void WriteLong(long hFile, long Value)
void WriteFloat (long hFile, float wvalue)
void WriteDouble (long hFile, double Value)

Write to the binary file using a respective format.

hFile File handle
Value The value to be written to the file

Part 3. WinPOS interfaces

VBScript. Debugging

=% DebugPrint, DebugPrintLn

void DebugPrint (VARIANT arg)
void DebugPrintLn (VARIANT arg)

Debugging printing to the Script editor output window. Applied only at the
operation with Script editor. DebugPrintLn() feeds the line only as distinct
from DebugPrint().

Arg Symbol line. For example:
DebugPrintLn "Max= "+FormatNumber(max,6,0,0,0)+";"

IWPGraphs

Graph subsystem interface.

This graph control interface is obtained by calling the GraphAPI method of the
IWinPOS interface.

Operation sequence at creation of a new page to represent a signal (e.g., operation
output of script or plugin):

// obtain access to the WinPOS graph subsystem

api := GraphAPI as IWPGraphs;

// create new page for graphs
hPage := api.CreatePage;

// the page is always created with one graph, obtain the
graph
hGraph := api.GetGraph (hPage, 0);

// the graph always has at least one axis Y, obtain the axis
hYAxis := api.GetYAxis (hGraph, 0);

// create a new line in the graph
api.Createline (hGraph, hYAxis, signal.Instance);

// normalize the graph
api.NormalizeGraph (hGraph) ;

29

WinPOS. Programmer’s Guide

Methods

=% CreatePage
long CreatePage ()
Create a new page. The default settings are observed.

New page pointer

=% DestroyPage
void DestroyPage (long hPage)
Delete page.

hPage Page pointer

=% CreateGraph
long CreateGraph (long hPage)
Create a new graph. The default settings are observed.

New graph pointer
hPage Pointer of the page where the graph is to be created

=» DestroyGraph
void DestroyGraph (long hGraph)
Delete graph.
hGraph Graph pointer

=% CreateYAxis
long CreateYAxis (long hGraph)
Add a new ordinate axis.

A pointer to new axis
hGraph A pointer graph, to which will be added an axis

=» DestroyYAxis
void DestroyYAxis (long hAxis)

Remove the axis.

30

Part 3. WinPOS interfaces

hAxis A pointer to an axis

=% CreateLine

long Createline (long hGr, long hAx, long hSig)

Create a new line. The default settings are observed.

New line pointer

hGr Pointer of the graph where to the line is to be added
hAx Y-axis pointer

hSig Signal pointer

=% DestroyLine
void DestroyLine (long hLine)
Delete line.

hLine Line pointer

=% GetPageCount
long GetPageCount ()
Number of graph pages.
Number of graph pages

= GetGraphCount
long GetGraphCount (long hPage)

Number of graphs in a page.

Number of graphs in a page
hPage Page pointer

= GetYAxisCount
long GetYAxisCount (long hGr)
Number of Y-axis of the graph.

Number of Y-axis of the graph
hGr Graph pointer

31

WinPOS. Programmer’s Guide

=% GetLineCount
long GetLineCount (long hGr)

Number of lines in a graph.

Number of lines in a graph
hGr Graph pointer
=% GetPage
long GetPage (long nPage)
Get a page by the number.
Page pointer
nPage Page number
=% GetGraph
long GetGraph (long hPage, long nGraph)
Get a graph by the number.
Graph pointer
hPage Page pointer
nGraph Graph number
= GetYAxis

long GetYAxis (long hGr, long nAxis)

Get Y-axis by number.

Axis pointer

hGr Graph pointer

nAxis Axis number
=% GetLine

long GetLine (long hGr, long nLine)

Get a line by number.

Line pointer
hGr Graph pointer
nLine Line number

32

Part 3. WinPOS interfaces

=% GetSignal
IDispatch* GetSignal (long hLine)
Get a reference to the signal represented by the hLine line.

The object supporting IWPSignal interface
hLine Line pointer

=% GetXCursorPos, SetXCursorPos

void GetXCursorPos (long hGraph, double* px, BOOL
bSecond)

void SetXCursorPos(long hGraph, double x, BOOL
bSecond)

Get or set a cursor position.

hGraph A pointer to the praph

x A cursor position

px A variable address for a return of the cursor position
bSecond To work with the position of the cursor second line

(only for differented cursor)

=% ShowCursor
void ShowCursor (long hPage, long mode)

Get or set a cursor position.

hPage A pointer to the page

mode A mode of a cursor displaying. See table
Flag Value Description

TM NONE 0 Cursor off

TM CURSOR 1 Cursor over all lines

TM DBLCURS 8 Double cursor

TM SLCURS 9 Cursor of the current line

=% GetPageRect, SetPageRect

void GetPageRect (long hPage, long* left, long*
top, long* right, long* bottom)

void SetPageRect (long hPage, long left, long top,
long right, long bottom)

33

WinPOS. Programmer’s Guide

Obtain and set the graph page layout dimensions.

hPage Page pointer

left Page left coordinates
top Page top coordinates
rigth Page right coordinates
bottom Page bottom coordinates

=% SetPageDim

void SetPageDim(long hPage, long mode, long width,
long height)

Set the graph positioning mode.

hPage Page pointer

mode Type of graph positioning. Possible positioning versions are
provided in the Table below.

width Number of graphs in a page by width

height Number of graphs in a page by height

Flag Value Description

PAGE DM VERT 0 Graphs positioned vertically

PAGE DM HORZ 1 Graphs positioned horizontally

PAGE DM TABLE 2 Graphs positioned as width*height table

=& GetXMinMax, SetXMinMax

void GetXMinMax(long hGR, double* pmin, double*
pmax)
void SetXMinMax (long hGr, double min, double max)

Get, set margins on the abscissa axis. Thus, it is possible to set or to get the
visible range of the signal.

hGr Graph pointer
min Minimum value or the pointer on it
max Maximum value or the pointer on it

= GetYAxisMinMax, SetYAxisMinMax

void GetYAxisMinMax (long hAxis, double* pmin,
double* pmax)

34

Part 3. WinPOS interfaces

void SetYAxisMinMax (long hAxis, double min, double
max)

Get, set margins of the selected Y-axis.

hAxis Y- axis pointer
min Minimum value or the pointer on it
max Maximum value or the pointer on it

=% NormalizeGraph
void NormalizeGraph (long hGr)
Normalize the graph.
hGr Graph pointer

=3 [nvalidate
void invalidate (long hGraph)
Refresh the graph plotting field.
hGraph Graph pointer

=% ActiveGraphPage
long ActiveGraphPage ()
Get the active graph page pointer.
Active graph page pointer

=% ActiveGraph
long ActiveGraph (long hPage)
Get the active graph pointer.
Active graph pointer
hPage Graph page pointer
=% Folder2Graphs, Folder2GraphsRecursive

void Folder2Graphs (IDispatch* Node)
void Folder2GraphsRecursive (IDispatch* Node)

Place all signals of this folder or batch file on a new page. The second
option avoids the embedded folders.

35

WinPOS. Programmer’s Guide

Node The object supporting IWPNode interface

=% Locate
IDispatch* Locate(long hGrItem)
Find a graph element in the tree over the sign
An object that supports the interface IWPNode
hGrItem A pointer to a page of graphs, a graph or a line
=» SetPageOpt
void SetPageOpt (long hPage, long opt, long mask)

Set parameters of the selected page.

hPage Pointer on the page

opt Bit field showing a particular bit to be set or removed.
See table below.

mask A mask. Shows which bits of the field opt should
change. See table below.

Flag Value Description

PGOPT SHOWNAME 1 The displaying of the page name

PGOPT SINGLEX 2 Flag one X-axis to the page

PGOPT SINGLEY 4 Flag one Y-axis to the page

PGOPT SINCCURS 8 Synchronizing cursors

=% SetGraphOpt
void SetGraphOpt (long hGraph, long opt, long mask)
Set the parameters of the selected graph.

hGraph Pointer on the graph

opt Bit field showing a particular bit to be set or removed.
See table below.

mask The mask showing the opt field bits to be changed. See
table below.

Flag Value Description

GROPT SHOWNAME 1h Flag of the name drawing

GROPT YINDENT 2h 10% indentation for the lines above and below

GROPT SUBGRID 4h Flag of the drawing of dotted lines on the grid

GROPT GRIDLABS 8h The lines values in the grid

GROPT LINENUMS 10h Show numbers of lines

36

Part 3. WinPOS interfaces

GROPT AUTONORM 20h Automatically to normalize graph during an
addition new lines

GROPT POLAR 40h Polar coordinate

GROPT AXCOLUMN 80h Flag of the placement Y axis one after another

GROPT AXROW 100h Flag of the placement Y axis one after another

=% GetAxisOpt, SetAxisOpt

void GetAxisOpt (long hGraph, long hAxis, long*
opt, double *minR, double *maxR, BSTR *szname, BSTR
*szftempl, long *color)

void SetAxisOpt (long hGraph, long hAxis, long opt,
long mask, double minR, double maxR, BSTR szname, BSTR

szftempl,

long color)

Get / set the parameters of the selected graph.

hGraph
hAxis

opt

mask

minR, maxR

Pointer on the graph (needed for the X-axis)

Pointer to the axis (for the X-axis: 0)

Bit field showing a particular bit to be set or removed.
See table below.

The mask showing the opt field bits to be changed. It
also shows whether or not to change the name or tick
label number format. See table below.

Displaying axis range (with the flag AXOPT RANGE -
full range, i.e. margins of a zoom)

szname Axis name (usually taken the dimension)

szftempl Tick label number format (described in the User’s guide,
part 5, Graphs creating, Graphs settings)

color Colour of the format RGB (white = FFFFFFh, black =
Oh)

Flag Value Description

AXOPT LOG 1h Logarithmic scale

AXOPT_FZERO 2h Add zeros to the end of the number ("1.500" instead of

n l .SH)

AXOPT TIME 4h Add a time scale in the format "hh:mm:ss.msc"

AXOPT COLOR’ 8h Set manually the color of tick label numbers

AXOPT RANGE’ 10h Set a full range of axis

AXOPT NAME™ 20h Set the name or the dimension of the axis

AXOPT FORMAT | 40h Set tick label number format

"~ to be used in the mask field only
=B SetLineOpt

void SetLineOpt (long hLine,

long width, long color)

long opt, long mask,

37

WinPOS. Programmer’s Guide

Set parameters of the selected line.

hLine Line pointer

opt Bit field showing a particular bit to be set or removed.
See the Table below.

mask The mask showing the opt field bits to be changed. Also
the mask shows if the line width or color has to be
changed. See the Table below.

width Line width

color RGB color (white = FFFFFFh, black = Oh)

Flag Value Description

LNOPT LINE2BASE 1h Add vertical lines from the value to 0

LNOPT ONLYPOINTS 2h Flag of points joining by lines

LNOPT VISIBLE 4h Flag of a displaying / hiding of lines

LNOPT HIST 8h As histogram

LNOPT HISTTRANSP 40h “Transparent” histogram

LNOPT PARAM 80h In the form of Y (idx), with the actual values on

the scale of the X-axis

LNOPT INTERP 300h The order of the interpolation (2 bytes)

LNOPT COLOR’ 10h Change the color line. See field color

LNOPT WIDTH' 20h Change the line thickness. See field width

" to be used in the mask field only

=% AddLabel

void AddLabel (long hLine,
double offsX, double offsY, BSTR text)

long mode, double x,

Add a label
hLine Pointer to the line
mode Label type. See table below
x The value of time to which the label is tied
offsX, The label position in the graph field, expressed as a
offsY percentage relative to the graph size
text The label text, if mode = LAB_TEXT
Flag Value Description
LAB SINGLE 0 On one line
LAB MULTI 1 On all lines
LAB TEXT 2 Text label

=% AddComment

Part 3. WinPOS interfaces

void AddComment (long hGr, BSTR text, double x,
double y, double dx, double dy)
Add comment
hGr Pointer to the graph
text The text of the comment
X, Y The position of the upper left corner of the comment,
expressed as a percentage relative to the graph size
dx, dy Comment sizes, expressed as a percentage relative to the

graph size

=% SaveSession, LoadSession

BOOL SaveSession (BSTR path)
BOOL LoadSession (BSTR path)

Save a current session of a work and load an earlier saved session.

The result of the operation (TRUE - success)
path The path to the session files on the disk
IWPSignal
Signal interface.
Properties
2 size

long size

Number of signal values (measurements).
@' DeltaX

double DeltaX

Step on axis X for a signal with a uniform X-axis. DeltaX=0 for a signal

with non-uniform axis.

= StartX
double StartX

39

WinPOS. Programmer’s Guide

Start X axis value for the signal with uniform abscissa axis. StartX contains
the abscissa axis first element value of the signal with non-uniform signal.

' SName

BSTR SName

Signal name.
' NameY

BSTR NameY

Measurement unites of signal values, line.
' NameX

BSTR NameX

Measurement unites of the abscissa axis, line.
' Comment

BSTR Comment

Comment, additional extended text information on a given signal.
' Characteristic

long Characteristic

Signal characteristics which impacts the graph type. The possible values are

provided in the Table.
Characteristics Value Description
SC NORMAL 0 Normal signal
SC SPECTR 1 Spectrum
SC LOGSPEC 2 Logarithmic spectrum
SC LOGX 4 Logarithmic abscissa axis signal
SC AMP 8 Amplitude
SC FASE 16 Phase
SC PARAM 32 Parametrical signal
@ MinY, MaxY

double MinY
double MaxY

Minimum and maximum signal values. If MaxY< MinY, the minimum and
maximum signal values are not yet calculated.

&' MinX, MaxX

40

Part 3. WinPOS interfaces

double MinX
double MaxX

Minimum and maximum values of the signal abscissa axis. If the signal
parameters change in time, MinX and MaxX are the start and end of the
parameter registration, respectively. MinX and MaxX are read only
accessible and van be modified by changing StartX and DeltaX or, at
unequal interval, by SetX().

' kO, k1

double kO
double k1

The coefficients of a calibration character, given as a linear function: y =
ki-(x — ko).

Methods

=% |nstance
long Instance()

Return the object pointer which provides the present interface. Instance is
used to transfer the object as parameter.

Object pointer

=% |IndexOf
long IndexOf (double x)

The value index (ordinal number) is returned corresponding to the given
time, and if the exact value for this time is not - index of the nearest value.

Number of a signal element from the range 0..(size-1)
x The given value of time (abscissa axes)

=% GetY, GetX

double GetY (long index)
double GetX(long index)

Return the signal element value by ordinate or abscissa axis.

Signal value by ordinate or abscissa axis

41

WinPOS. Programmer’s Guide

index Signal element number of the range 0..(size-1)

=3 GetYX
double GetY¥X(double x, int pow)

The signal value is returned corresponding to the given time and if the
exact value for this time is not — the interpolated value.

Pow determines the method of an interpolation.

Given value
x Given the time value Bpemenu (abscissa axes)
pow Type of an interpolation: 0 — absent (is taken the last

value over time), 1 - linear interpolation, 2 - square
polynomial, 3 - interpolation by cubic local splines

=& SetY, SetX

void SetX(long index, double value)
void SetY(long index, double value)

Set the signal element number by ordinate or abscissa axis. SetX makes no
sense for the signals with uniform X axis, and for such signals StartX and
DeltaX properties shall be set.

index Signal element number of the range 0..(size-1)
value New value
IWPUSML
Batch file interface (USML and MERA).
Properties
#' FileName

BSTR FileName

Full file name.

' ParamCount
long ParamCount

Number of parameters of the batch file (USML or MERA).

42

Part 3. WinPOS interfaces

&' Name, Test, Date

BSTR Name
BSTR Test
BSTR Date

Name of product, test and test data in “dd.mm.yy” format.

Methods

=% Instance
long Instance()

Return the object pointer which provides the present interface. Instance is
used to transfer the object as parameter.

Object pointer

=% Parameter
IDispatch* Parameter (long index)

Return the signal from the batch file by number.

The object supporting IWPSignal interface
index Number of signal of the range 0..(ParamCount-1)
=& FileSave

void FileSave ()
Save file.
=» AddParameter
void AddParameter (IDispatch* signal)
Add signal to USML or MERA file.

signal The object supporting IWPSignal interface
=» DeleteParameter

void DeleteParameter (long index)
Delete parameter with the specified number.

index Number of signal of the range 0..(ParamCount-1)

43

WinPOS. Programmer’s Guide
IWPOperator

Calling interface of mathematical algorithms. According to the used terminology,
Operator is a mathematical Algorithm jointly with Parameters of performance of
this algorithm.

Properties

= Name

BSTR Name

Short algorithm name.
' Fullname

BSTR Fullname

Full algorithm name.
' nSrc, nDst

long nSrc
long nDst

Number of input and output parameters. For example, for the amplitude
spectrum nSrc=1, nDst=1; and for the mutual correlation function nSrc=2,
nDst=1.

Methods

=% Instance
long Instance ()

Return the object pointer which provides the present interface. Instance is
used to transfer the object as parameter.

Object pointer

=% Exec

long Exec (VARIANT src, VARIANT src2, VARIANT dst,
VARIANT dst2)

Execute the algorithm. If the actual number of the input (output) signals of
the algorithm is less than two, the unused parameters are ignored.

Error code. Zero, if successful.

44

Part 3. WinPOS interfaces

src First input signal

src2 Second input signal

dst First output signal

dst2 Second output signal
=» Error

long Error ()
Get the last error code.

Error code. Zero, if no error.

=% MsgError
BSTR MsgError ()
Get the last error message.

Text description of the last error.

=& getProperySet
BSTR getProperySet ()
Get the algorithm option list.

Line of the algorithm option names, enlisted by comas.

=% setProperty
void setProperty (BSTR name, VARIANT value)
Set the selected algorithm property value.

Name Property name
Value New property value

= getProperty
VARIANT getProperty (BSTR name)
Read the selected algorithm property value.

Property value
Name Property name

45

WinPOS. Programmer’s Guide

=% loadProperties
void loadProperties (BSTR values)
Load the algorithm property set values.

values New values of the properties set. Format line «
name_propertyl = value_propertyl , name_property2 =
value property2, ... ».
For example: " kindFunc = 3, numPoints = 1024 , nBlocks
=] ". The values of skipped properties are not assigned
(default values are stored).
=% getPropertyValues
BSTR getPropertyValues ()
Read values of all algorithm properties.
Format line « name_propertyl = value propertyl ,
name_property2 = value property2 , ... » .
=% SetupDIg
long SetupDlg()

Call the dialog of the algorithm option setup and the source signals’

selection.
Dialog execution output. The Table below contains the
returned values.
Result Value Description
IDOK 1 Algorithm execution started
IDCANCEL 2 Operation canceling
IDERROR -1 Error open dialog
IWPNode
WinPOS object tree node, the object «mount pointy.
Properties
' Name
BSTR Name

46

Part 3. WinPOS interfaces

Name of node, object.
= ChildCount
long ChildCount

Number of child elements of a given node. For example, the number of
signals for the batch file node.

Methods

=% |nstance
long Instance ()

Return the object pointer which provides the present interface. Instance is
used to transfer the object as parameter.

Object pointer

=% Root
IDispatch* Root ()
Pointer to the WinPOS object tree root node.

The object supporting IWPNode interface

=% AbsolutePath, RelativePath

BSTR AbsolutePath ()
BSTR RelativePath (IDispatch* baseNode)

Absolute or relative node path.

Line, node path.
baseNode The node by which the relative path is calculated

=% Reference
IDispatch* Reference ()
The reference object of a given node.

The reference object of a given node.

=% |sDirectory
long IsDirectory()

47

WinPOS. Programmer’s Guide

Check if a given node is a folder or a batch file.

1 — folder, O - other.

=% GetReferenceType
long GetReferenceType ()

Type of object the given node is referring to.

Type of object. The possible types are given in the Table
below.
Type Value Description
OT FOLDER 0 Ordinary folder
OT PFILE 1 USML or MERA file
OT SIGNAL 2 Signal
=» Link
IDispatch* Link(IDispatch* Object, BSTR name, long
flag)
Place the object to the child node list of the given node.
The object supporting IWPNode interface
Object The object to be placed to the tree
name Object name
flag If the node with such name already exists, at flag=1 new
node name is modified («Namey is changed to
«Name#1»), at flag=0 the old object is replaced.
=% Unlink
void Unlink (BSTR objname)
Delete child node with the set name of the given node.
objname Line, node name to be deleted
=% [sChild

long IsChild(IDispatch* testNode)

Check if the node is a child of a given node.
Child - 1, otherwise — 0.

48

Part 3. WinPOS interfaces

testNode The object supporting IWPNode interface

=% GetNode
IDispatch* GetNode (BSTR path)
Get the child node by name.

The object supporting IWPNode interface
path Path to the child node

':':% At
IDispatch* At (long index)

Get the child node by number.

The object supporting IWPNode interface
index Number, 0 .. (ChildCount-1)

49

Part 4. Interfaces of plug-ins

Part 4. Interfaces of plug-ins

Any connected module has to incarnate the interface IWPPlugin. See chapter
“Creating a plug-in step by step” part 2. The interfaces IWPImport and IWPExport
serve for the access to data files of irregular format.

IWPPlugin - the main interface of any plug-in
IWPImport - the interface of the data import
IWPExport - the interface of the data export

Interfaces of plug-ins are dual. Returnable value (HRESULT) — an integer: 0 — a
call successfully realized (S_OK), otherwise — an error code.

IWPPIlugin
The main interface of a plug-in, taking commands and messages of WinPOS.

Methods

=» Connect
HRESULT Connect (IDispatch* app, long* Value)

WinPOS calls this method during an upload, passing a pointer to the main
application interface.

app A pointer to the main application interface — IWinPOS
Value A returnable value. Is not used.

=% Disconnect
HRESULT Disconnect (long* Value)
To disconnect a plug-in.

Value A returnable value. Is not used.

=% NotifyPlugin

51

WinPOS. Programmer’s Guide

HRESULT NotifyPlugin(long what, VARIANT* param,
long * Value)

A notification of WinPOS events.

what An event code. For example, for a pressing of a button on the
toolbar: superior word, HiWord(what) — the command code
(see RegisterCommand), junior — LoWord(what) = 2.

param Additional data, depending on a message type
Value A returnable value. Is not used.
IWPImport

A list of file formats maintained by the WinPos can be expanded. For the files
reading realize the interface IWPImport and call the function RegisterImpExp() in
the method Connect(), passed the pointer to this interface in the first parameter.

Methods

=% Open

HRESULT Open (BSTR path, long * Count, HRESULT *
ErrorCode)

It is called at a pressing of the button Open in the window of a file select.
In this method it is possible to count all file signals and to create a list to
which WinPOS will appeal through GetSignal().

path A name of the selected file
Count A number of signals which are contained in the file.
ErrorCode A code error, 0 — if the file has been read correctly.

=% Close
HRESULT Close ()

To close a file. It is called upon termination of a reading of signals. Here it
is possible to clear a list of opened signals

=% GetSignal
HRESULT GetSignal (long n, IDispatch ** Value)

WinPOS calls this method placing signals in the tree of signals.
52

Part 4. Interfaces of plug-ins

n A serial number of the signal in the file.
Value An interface pointer IWPSignal of a next signal.

=% GetPreviewText
HRESULT GetPreviewText (BSTR path, BSTR * Value)
A notification of WinPOS events.

path A name of the selected file.

Value A string, placed in the bottom of the window of the file
opening. It may contain information about a quantity of
signals and recording features.

IWPEXxport

A list of file formats maintained by the WinPos can be expanded. For the files
saving realize the interface IWPExport and call the function RegisterImpExp() in the
method Connect(), passed the pointer to this interface in the second parameter.

Methods

=& AddSignal
HRESULT AddSignal (IDispatch* sigqg)

By means of this method WinPOS transmits to the export plug-in the
signals selected for a saving.

sig An interface pointer IWPSignal of a next signal.

=% Save
HRESULT Save (BSTR path, HRESULT* ErrorCode)
To disconnect of a plug-in

path A name of a selected file
ErrorCode A code error, 0 — if the file has been saved correctly.

53

WinPOS. Programmer’s Guide

54

Part 5. The call of algorithms

Part 5. The call of algorithms

The algorithms are available through the tree of WinPOS objects. That is, the
algorithms can be accessed by name, choosing from the objects tree. The sequence
of calls is such: to get an operator, to load the necessary settings, to carry out the
operator. So the call of an autospectrum with current settings looks:

var oper : IWPOperator;

oper:= WINPOS.GetObject ('/Operators/ Auto spectrum'') as
IWPOperator;
oper.Exec (signal, signal, refvar(dst), refvar(dst2));

Download the settings of the algorithm can either in turn by the method
setProperty(), or simultaneously, by the method loadProperties(), see above the
description of the interface IWPOperator. Values of the omitted parameters are not
assigned (values by default are saved). So the same call of the autospectrum with
specifying settings looks:

var oper : IWPOperator;

oper:= WINPOS.GetObject ('/Operators/Auto spectrum') as
IWPOperator;

oper.loadProperties (' kindFunc = 3 , numPoints = 1024 , typeWindow
=1");

oper.Exec(signal, signal, refvar(dst), refvar(dst2));

Procedures of a simplified call of algorithms

A call most used algorithms is automated. In the file POSBase.pas for VBScript —
in the WinPOS.wps) the procedures, designed in the style of calls " POS command
mode”, simplifying the call of algorithms, are realized. The example above can be
rewritten as:

RunFFT (signal, dst, dst2, Opt, Err);

The names of the procedures are listed below together with a description of the
algorithms settings. Designation Src, Src2, Dst, Dst2 are variables,
pointing to objects with interface IWPSignal, Err — the error code (0, if no errors),
Opt - the line of settings, where the parameters with the values listed through a
comma: « name propertyl = valuel , name property2 = value 2 , ... » . The
example: " kindFunc = 3, numPoints = 1024 , nBlocks = 1 ".

55

WinPOS. Programmer’s Guide

Algorithms on basis of the Fast Fourier Transformation (FFT).
Algorithms, implementing FFT, have some common settings:

type Type of function. See the Table below

kindFunc Depending on the value of the field TYPE, may contain values from
different sets of constants More details see the table below

method Calculation method: 0 — FFT, 1 - DFT

numPoints Number of points of FFT calculations: 32...1048576

nBlocks Number of averaging blocks: 1...(signal length/numPoints)

ofsNextBlock Block shift in respect to each other: 1, numPoints/4, numPoints/2,
numPoints*3/4, numPoints

typeWindow Window function type (see the Table below)
typeMagnitude Type of values (see the Table below)
isMO Centering: 1 — enabled, 0 — disabled
isFillo0 Supplement by zeros: 1 — supplement, 0 — no
fMaxVal Maximum values: 1 — Maximum, 0 — averaged
fLog Llogarithm: 1 — the result in dB, 0 —no
log kind 0—20*logX, 1 — 10*logX
log fOpZn Use the reference value: 1 —use, 0 - no
log Opzn Reference value
fPrSpec To implement the transformation of the spectrum
prs_kind A kind of a transformation: 0— 1, 1 — /0,2 - /o2, 3 - 2\2/0 >,
4-1*0,5- 1%’
prs_loFreq Lower frequency
prs_s2n A relation signal / noise
prs_fCorr To use the function-corrector

prs_typeCorr A function type: 0 — custom (given in prs_strCorr), 1 — function A,
2 — function B, 3 — function C

prs_strCorr The function-corrector (Line of the type "x1 y1 x2 y2 x3 y3...")
£3D Flag of the three-dimensional presentation of the results: 1 - result - a
three-dimensional spectrum, 0 - no
fSwapXz Time along the axis X: 1 - along the axis X - the time, along the

axis Z - frequency, 0 - along the axis X - frequency, along the axis
Z - time (for 3D)

Values of the field type

Constant Value Description
AUTOSPECTR | 0 Auto spectrum
CROSS 20 Cross spectrum
COHEREN 30 Coherence function
TRANS 40 Transfer function

56

Part 5. The call of algorithms

| COMPLEX | 50 | Complex spectrum

Values of the field t ypeWindow
Constant Value Description
SINGLEWIN 1 Rectangular function
TRIANGLEWIN 2 Triangle function
HANNINGWIN 3 Hanning function
BLACKMANWIN 4 Blackman function
FLATTOP 5 Flat-Top

Values of the field typeMagnitude
Constant Value Description
MEAD 1 Effective
PEAK 2 Amplitude values
MAXPEAK 3 Maximum amplitude values

Auto spectrum
Shortcut:

procedure RunFFT (const Src : OleVariant; var Dst, Dst2,
Err : OleVariant)

Opt,

Settings:
type 0 (AUTOSPECTR)
kindFunc may take the following values.
Constant Value Description
SPM 1 Power density spectrum
SM 2 Power spectrum
SPP 3 Energy density spectrum
SMAG 4 Amplitude spectrum
SRI 5 Complex spectrum as real and imaginary parts
SMF 6 Complex spectrum as module and phase

Octave spectrum
Shortcut: no

Setting:
type 0 (AUTOSPECTR)
fFlt Calculation method of the spectrum: 1 — band-pass filters, 0 — FFT
fQual 1 — use filters of a high accuracy, 0 — simple

kindFunc may take the following values:

WinPOS. Programmer’s Guide

Constant Value | Description

Oktavl 10 Octave spectrum
Oktav3 11 third-octave spectrum
Oktav12 12 1/12- octave spectrum
Oktav24 13 1/24- octave spectrum

Cross spectrum

Shortcut:
procedure RunCrossFFT (const Src, Src2 OleVariant; wvar Dst,
Dst2, Opt, Err OleVariant)
Settings:
type 20 (CROSS)
kindFunc may take the following values.
Constant Value Description
CrSPM 21 Power density spectrum
CrRI 22 Cross spectrum as real and imaginary parts
CrMF 23 Cross spectrum as module and phase

Complex spectrum

Shortcut:

procedure RunComplexFFT (const Real, Imag : OleVariant; var
Dst, Dst2, Opt, Err OleVariant)

Settings:

type 50 (COMPLEX), kindFunc is ignored

Coherence function. Non-coherence function

Shortcut:

procedure RunCoher (const Src, Src2 OleVariant; var Dst, Opt,
Err OleVariant)

Settings:

type 30 (COHEREN)

kindFunc may take the following values.

Constant Value Description
COHERF | 31 Coherence function
COP 32 Coherent output power

58

Part 5. The call of algorithms

SN 33 SNR
NOTCOP | 34 Non-coherent output power
NOTCHR | 35 Non-coherence function

Transfer function

Shortcut:
procedure RunFuncTransfer (const Src, Src2 : OleVariant; var
Dst, Dst2, Opt, Err : OleVariant)
Settings:
type 40 (TRANS)
kindFunc may take the following values.
Constant Value Description
H1 41 H1 transfer function
H2 42 H2 transfer function

Spectrum transformation

Shortcut: no
Settings:
kind

loFreq

signal2noise
useCorrector
strCorrector

typeCorr

transformation type: 0— 1,1 — l/o,1— l/o,2— 1/o2 3 - 2\2/®
24-1*0,5-1*0 >

Lower frequency

ratio signal / noise

Use a function-corrector

Function-corrector (string type "x1 y1 x2 y2 x3 y3...")

Function type: 0 — user (in strCorrector), 1 — function A, 2 — function
B, 3 — function C

59

WinPOS. Programmer’s Guide

Filtering algorithms

Infinite impulse response filtering (IIR)

Shortcut:
procedure RunIIRFiltering(const Src : OleVariant; var Dst,
Opt, Err : OleVariant)

Settings:
iType Approximation type (see the Table below)
iKind Filter type (see the Table below)
nOrder Number of 2™ order sections (order): 1...20
nRipple Ripple (%) in the passband: 1...5
fsr Cutoff frequency (for LPF, HPF)
fn Low cutoff frequency (for BPF)
fv Top cutoff frequency (for BPF)
fs Sampling rate
HO Filter coefficient

Values of the field 1Kind

Constant Value Description

LowPass 1 Low-Pass Filter (LPF)

BandPass 2 Band-Pass Filter (BPF)

HighPass 3 High-Pass Filter (HPF)
Values of the field i Type

Constant Value Description

Butterworth 1 Butterworth filter

Chebyshev 2 Chebyshev filter

Elliptic 3 Elliptic filter

Finite impulse response filtering (FIR)

Shortcut:
procedure RunFIRFiltering(const Src : OleVariant; var Dst,
Opt, Err : OleVariant)

Settings:
iType Approximation type (with Fourier series). Ignored
iKind Filter type (see the Table below)

60

Part 5. The call of algorithms

iTypeWi Window type (see the Table below)

n

nOrder Number of coefficients (order), odd number: 1...1001
fsr Cutoff frequency (for LPF, HPF)

fn Low cutoff frequency (for BPF, BEF)

fv Top cutoff frequency (for BPF, BEF)

fs Sampling rate

Values of the field 1Kind

Constant Value Description

LowPass 1 Low-Pass Filter (LPF)

BandPass 2 Band-Pass Filter (BPF)

HighPass 3 High-Pass Filter (HPF)

BandStop 4 Band-Eliminate Filter (BEF)
Values of the field i TypeWin

Constant Value Description

HANN 2 Hann window

HAMMINGWIN 3 Hamming window

Median Filtering
Shortcut: no

Settings:
Type Filter type: O - discrete, 1 - analog
nPoints Number of points
Level Threshold (only for analog filter)
LevelLow The lower level (for the discrete filter)
LevelHi The upper level (for the discrete filter)
bAuto Automatic detection of levels (for discr.).

61

WinPOS. Programmer’s Guide

Operations on signals

Differentiation

Shortcut:
procedure RunDiff (const Src : OleVariant; var Dst, method, Err
OleVariant)

Settings: method method may take the following values.

Constant Value Description
THREE POINTS 3 3 point method
FIVE POINTS 5 5 point method
Integration
Shortcut:

procedure RunIntegral (const Src : OleVariant; var Dst, method,
numpointsAverg, typeRezult, Err : OleVariant)

Settings:
method The method of an integration. See table below.
typeRezult Centering, 1 - enabled, 0 - off
numpointsAverg Number of points averaged (only for RC)
flagDelPerProcess The suppression of the transition process: 1 - enabled, 0 - off.
(Only for vibro)
npointsPerProcess The length of the transition process (only for vibro)
fsr The cutoff frequency of filtration (only for vibro)
Constant Value Description
AILER INT 1 Euler method
HANNING INT 2 Hanning method
RC INT 3 RC-chain method
VIBRO INT 4 Vibrointegration
Normalization
Shortcut: no
Setting:
HiFront Upper confine
LoFront Lower confine

EnaShift The shift of signal values relative to 0: 1 - allow (changing statistical
characteristics: MO, dispersion, etc., are changed) 0 - disable

62

Part 5. The call of algorithms

Centering
Shortcut: no

Settings: no

Arithmetic operation
Shortcut: no

Settings:

kind Type of the operation. Can take the values shown in the table.

const Constant (for operation with one signal)

Constant Value Description

CONST PLUS 0 addition of the constant const

CONST MINUS 1 subtraction of the constant const

CONST MULTI 2 multiplication by the constant const

CONST DIV 3 division into the constant const

BUF PLUS 4 addition of the two signal values

BUF_MINUS 5 subtracting the value of second signal from the
value of the first

BUF MULTI 6 multiplication of the values of two signals

BUF_DIV 7 dividing the value of first signal on the value of
the second signal

Taking the logarithm
Shortcut: no

Settings:
kind 20logX (0) mmm 10logX (1)
useOpzn Use the reference value (1), otherwise (0) - max
OpZn Reference value

Resampling

Shortcut:

procedure RunResampling (const Src : OleVariant; var Dst :
OlevVariant; Freq, Method, FltType : OleVariant; var Err : OleVariant)

Settings:
freq New sampling frequency
kind Types of interpolation. See table below.
type Type of filtering. See table below.
srcdt Save the initial data type

63

WinPOS. Programmer’s Guide

Values kind

Constant Value Description

NOINT 0 No interpolation

LINEINT 1 Linear interpolation

PARABINT 2 Interpolation of a second order polynomial
SPLINE3INT 3 Cubic local splines

Values type

Constant Value Description

NOFLT 0 No filtering

IIRFLT 1 Recursive filtering
FIRFLT 2 Nonrecursive filtering

Hilbert transformation
Shortcut: no

Settings:
nPoints The number of points on which the FFT is calculated: 32 ... 1048576
nBlocks Number of averaging servings: 1 ... (length of the signal / nPoints)
isMO Centering: 1 - On, 0 - off

Envelope

Shortcut: no

Settings:
kind Method: 0 - peak-detector, 1 - Hilbert transform
coef Coefficient (K) for the method of peak-detector

If the method of the Hilbert transform is selected, apply the settings of the Hilbert
transform are also applied for this algorithm (see above).

64

Part 5. The call of algorithms

Investigation of signals

Probabilistic characteristics

Elements of the resulting signal (Dst) contain the values of the probability
characteristics of the original signal.

Constant Displacement Description

IDX MO 0 average of distribution
IDX D 1 dispersion

IDX SIG 2 mean-square deflection.
IDX A3 3 Asymmetry

IDX A4 4 Kurtosis

IDX MAG 5 amplitude

Thus, to obtain, for example, the dispersion of the signal, should call the method
Dst.GetY (1) after the execution of the algorithm.

Shortcut: no Settings: no
Probability density
Shortcut:

procedure RunPRV (const Src : OleVariant; var Dst, npoints,
type, Err : OleVariant)

Settings:
npoints Number of calculation points
vise Method of calculation and representation of PDF (see
the Table below).
Constant Value Description
PARZEN 1 PDF, core estimation method
HIST 2 PDF, histogram calculation
PARZNORM 8 Probability, core estimation method
HISTNORM 4 Probability, histogram calculation

Auto correlation

Shortcut:
procedure RunAutoCorel (const Src : OleVariant; var Dst,
npoints, eps, Err : OleVariant)

Settings:
npoints Number of points for correlation function plotting
type Return the statistic error value

65

WinPOS. Programmer’s Guide

Cross correlation

Shortcut:
procedure RunCrossCorel (const Src, Src2 : OleVariant; var Dst,
npoints, eps, Err : OleVariant)
Settings:
npoints Number of points for correlation function plotting
type Return the statistic error value

Parametric graph
Shortcut: no
Settings:

type 0 - parametric graph 1 - polar, 2 - parameter for the signals at the same
sampling (values are taken with the same indexes)

66

Part 6. Embedded script editor

Part 6. Embedded script editor

Borland Delphi is the best suitable tool for writing own effective processing
algorithms, processing of huge data, creation of applications based on WinPOS but
requiring additional customization or able to generate specialized reports. Borland
C++ Builder, Microsoft Visual C++, Visual Basic or FoxPro can also be used.

However, Visual Basic Script is the most suitable tool for writing of small scripts for
WinPOS operation or simple algorithms. VBScript is included into the Microsoft
Windows package, requires no separate compiler, and WinPOS includes a
convenient editing and debugging environment for scripts.

Script editor (Fig. 6.1) is opened by the menu Script— Script editor...

Eﬂﬂo name - WinPOS5_ Scrnpt editor
File Edit %iew Debug Help

D & b * |7

13 ‘sat signal length ﬂ
19 signal.3ize = 10000

z0

21 "enter data

22 = for i =0 to 9339

23 ' caloulate the next signal value

24 v = 100%gin{i#0.05)

25

26 ' set to the sigual

27 ‘signal.Set¥ i, ¥

28 next

74 f
4 b

] 2

Conzole |Ereakpnint$ Local variables‘ Eﬂpressinnsl Call ﬂau:k‘

Feady 0028 0007
Fig. 6.1. Script editor window

The script editor is a text editor with syntax highlighting and a standard toolset
accessible through menu, toolbars and hotkeys. The editor also provides all
necessary tools for the debugging script execution: breakpoints and step execution,
viewing of local variables and call stack, calculation of expressions.

67

WinPOS. Programmer’s Guide

The embedded script editor is distinguished by the following features:

Debugging control buttons on the toolbar,
Syntax highlighting,

Brace matching control and indent control,
Line numbering with breakpoints (on the left),

Debugging panels (below the editing area).

v Toolbar The menu View serves for enabling and disabling of the editor

v Status bar visual elements.
v Debug windows

The syntax highlighting allows reduction of errors at the script text typing and helps
the text perception:

Blue bold shows VBScript reserved words,
Blue — symbols,

Italic - line constants,

Green — comments, and

Identifiers are shown by conventional black font.

The pair brackets are shown by green background:

¥ = 100%*sinfi*0.05)

The Tab symbol is marked by a vertical strip which allows better visibility of
included cycles and conditions.

68

Part 6. Embedded script editor

Editing mode

The script editing mode commands are:

o

fé Menu glz};?:;rd Description

[File— New script Ctrl+Shift+N Clear window for a new script

= File — Open script ... Ctrl+Shift+O Open file to edit
File — Save script Ctrl+Shift+S Save edited file
File —Save script as... Save script with a new name
File —»Quit Alt+F4 Close the editor window
Edit—Undo Ctrl+Z Undo the last action

% Edit >Cut Ctrl+X Cut the selected fragment to the buffer

Edit —Copy Ctrl+C Copy the selected fragment to the buffer

2 Edit —Paste Shift+V Paste the buffer text at the cursor position
Edit —Select all Shift+A Select all text
Edit —Find... Find the line
Edit —Replace... Find and replace the line
Edit —Go to line... Go to the line with the set number

® Help—Index... F1 WinPOS object help.

The dialog Go to line (Fig. 6.2, menu Edit—Go to

line...) helps the navigation in a lengthy script. The eoumbee :
line number is shown both on the left margin and on
the status bar (cursor position, the line is the first

digit in the pair “Illl:cccc™).

Cancel

Fig. 6.2. Go to line

The dialog Find (Fig. 6.3, menu Edit—Find...) allows identification of all

occurrences of the line set in the field
Find text, considering the case (Case
sensitive) and the position in the
surrounding text (Whole words and
Regular expressions). The buttons
Next and Back set the searching
directions in respect to the current
cursor positions.

Find %]

Find what: Find nest
|size j
Find presw

r

[Regular expression

Cloge

Fig. 6.3. Find dialog
69

WinPOS. Programmer’s Guide

Hontacd The dialog Find and replace (Fig. 6.4,
:E‘;DW“"'“ Figact menu Edit—replace...) repeats the
Leplacew"h: = Find prev dialog Finds with additional option of
622 =] [Feateee replacement of the found line by the

S line specified in the field Replace. The
:: oo o LPegcedl | button Replace makes one replacement,
I Fiagular cxprossion Replace all — automatically replaces all
I Replace inseleclion identified text. The flag Replace in
selection allows limiting of the text

Fig. 6.4. Find and replace dialog modification area.

Debugging mode

The commands of the script execution and debugging are:

-
<
g Keyboard _
B Menu oot Description
=
2 Debug‘gmg—>Start/C0ntmue Ctrl+F10 Switch to the script execution mode
execution
De})uggmg —Enable/Disable stop F9 Set breakpoint
point
£} Debugging —Step In F11 Step execution of procedures
1* Debugging —Step Over F10 Step execution
{P* Debugging —Step Out Ctrl+F11 Quit procedure
£l Debugging —Stop debugging Alt+F10 Stop script execution
Debugging —Restart Restart mode

@® In the debugging mode the script text cannot be edited.

The transfer to the debugging mode is made by the button F . If the breakpoints
(*, breakpoints) are not set, and the restart option is not enabled
(Debugging— Restart), the script will be completely executed.

1o "==] To set the breakpoint on the selected line press the button #* o
11 @ Linl <F9>. Breakpoint appears on the current line, and a read point will be
12 ¢>|Ref:| made on the margin.

L -]

In order to continue the script execution the button P can be pressed

again. The scrtpt execution can be continued by steps by the buttons *, & and (3.
The position of the line being the next for execution is marked by yellow arrow in
the margin.

70

Part 6. Embedded script editor

Debugging panels

The debugging panels provide a full overview of the executed script status at each
instance (allow tracking of the script execution, variable content modifications, etc.).

Console IE. [] DebugPrintln "test"
The debugging printing 17 > signal.Size = 10000 Jﬂ
. . »
(functions DebugPrint()
apd DebugPrintLn()) is |[foop =]
directed to the Console
(Fig. 6.5).
<] o
Consaole |Breakp0ints] Local variablesl ExpressionsJ Call stackl
Breakpoints Fig. 6.5. Console
Setting of breakpoints |Line [State | Plass count |
Fi 6.6 h he li 16 Enabled 1
(Fig. 6.6) shows the list |, Enabled 0

of breakpoints with line
numbers, status, and the
counter of line passing.
The breakpoint status
(active or blocked — is
marked by grey) can be modified by the context menu, the breakpoint can be
removed by <F9> and by the context menu.

Console Breakpoints |Local variablesl E:-:plessions] Call stackl

Fig. 6.6. Breakpoints tab

Local variables Hrda | Tun | 3Ha4EHMe | OnmcaHKe
zighal Obiject (]

The values and types of |i Integer 17

local variables can be |* Dauble 97 7864602435, .

viewed at the bookmark |4 | >

of the same name (Flg Conzole | Breakpoints | gzal wanables | Expressions | Call stack

6.7). Fig. 6.7. Local variables tab

Double mouse click at the EElREEIREIE

variable line opens the Name: [y Charigs

dialog 6.8 where the Type - [Double

variable value can be pescipion: |

Viewed and mOdlﬁed (the Walue : |9?.?854502435315

field Value, the button

Refresh). Puc. 6.8. Change variable value dialog

71

WinPOS. Programmer’s Guide

BripameHue [Expressions
100%sin{i"0.8) 95.9161514856437 .
signal.Size 10000 Bookmark of expression

(Fig. 6.9) enables
1| | calculation of any

I:c-nsole] Ereakpoints] Local variables Ewpressions | Call stack expresglon written by
i . -) VBScript syntax.
Fig. 6.9. Setting expression calculations tab

-

New expression can be
added, deleted or

Add/edit exprezzion

A .
1EDDTS_SIT]D . modified by context
sinfi*0.8) menu containing the
Cancel : g :
expression editing dialog
(Fig. 6.10).

Fig. 6.10. Expression addition dialog
The selected script line
can be copied to the bookmark Expressions via the editor context menu.

Call stack
Context | Funition name
0D 3444 SubResul The last bookmark, Call
D40AD35134 Calculate stack (Fig. 6.11), is an aid
0=040 38954 it . .
for the script debugging.
dl | *|| This bookmark including
Console] Ereakpoints] Local variables] Expressions Call stack a large number of
procedures is

Fig. 6.11. Call stack tab ! ..
irreplaceable for writing a

code with recursive calls. The current procedure stands at the top of the stack.

72

Appendix. Samples

Appendix. Samples

When installed WinPOS creates the subdirectory Samples in its operation catalog
containing the samples of script implementation by VBScript and the samples of
creation of applications and plug-ins by Delphi.

Samples \
VBS - Sample scripts (Visual Basic Script)
Delphi - Sample scripts (Delphi)
DelphiPlugIn - Sample of plug-in (Delphi)
DelphiCommon - Service modules (Delphi)

The catalogs VBS and Delphi contain six program samples each.

:3$EI; Description Employed options

1 Signal generator. The signal is | v~ Signal creation
created and filled by the values | v" Adding signal to the WinPOS tree
calculated by the function. v’ Access to signal values

2 Graph representation of the v' Create signal with unequal X axis
signal. The signal is created v Access the WinPOS graph subsystem
and filled, and the generated v Signal plotting
signal is placed to the graph.

3 Loading of arbitrary USML v' Load batch file
file, signal processing v' Call RunFFT() procedure
(AutoSpectrum).

4 Calling of the file selection v' Operate the file opening dialog
dialog, load of binary data file, | v" Load binary file
signal processing (call of v" Execute the operator by Exec()
WinPOS algorithm by name, |v" Call PrintPreview() method
setting of options), printing.

5 Loading of USML file, v' Additional processing of the WinPOS
calculation of AutoSpectrum. algorithm execution results
Additional processing of the v’ Create page with two plots (source
result: find three frequencies signal and resulting signal)
with the maximum amplitude
values in the spectrum and
print these values

6 Loading of USML file, signal |v" Sequential execution of the algorithm
processing: resampling, chain

73

WinPOS. Programmer’s Guide

filtering, autospectrum.

v' Representation of several parameters
by one graph

For the sake of the user’s convenience, Delphi samples are represented by separate
files enabled by the directive «$I». Each file contains the procedure body only. For
compiling of the files as separate units, these files have to be completed by a
standard outline: unit, interface, implementation...

The catalog DelphiPlugln contains a sample of plug-in which adds the button
enabling one of Delphi samples to the WinPOS toolbar.

The catalog DelphiCommon contains TLB file with description of WinPOS
interfaces (WinPOS_ole TLB.pas) and the file PosBase.pas with simplified access
procedures for WinPOS algorithms and constant values descriptions.

A program sample of test signal generation program, spectrum calculation and graph

representation is given below.

// Sample 1.

// Signal generation, algorithm call, graph plotting.

program Samplel;

uses
Forms,
Winpos ole TLB in '../DelphiCommon/Winpos ole TLB.pas',
PosBase in '../DelphiCommon/PosBase.pas';

var signal: IWPSignal;
y : Double;

dstl, dst2, OptFFT, Err :

api : IWPGraphs;

i, hPage, hGraph, hGraphFFT,

begin
Application.Initialize;

with WINPOS do
begin

// 1) create signal

OleVariant;

hAxis, hAxisFFT : Integer;

signal:= CreateSignal () as IWPSignal;

74

Appendix. Samples

if Assigned(signal) then // if the signal is created
begin

// place signal to the tree
Link('/Signals/generator', 'sinus', signal as IDispatch) ;
Refresh();

signal.size:= 10000; // set signal length

for i:= 0 to 9999 do // enter data

begin
y:= (100)*sin(i*0.08); // calculate the next signal
signal.SetY (i, y); // set to the signal

end;

// 2) apply the “Autospectrum” operator to the signal
RunFFT (signal, dstl, dst2, OptFFT, Err);

// place the result to the WinPOS tree
Link('/Signals/Result', 'spectrum',6 dstl);

// 3) represent the source and result signals
// obtain access to the WinPOS graph subsystem
api:= GraphAPI as IWPGraphs;

// create new page for graphs
hPage:= api.CreatePage;

// the page is always created with plotting area
hGraph:= api.GetGraph (hPage,0);

// create additional graph for the spectrum
hGraphFFT:= api.CreateGraph (hPage) ;

// obtain Y axis
hAxis:= api.GetYAxis (hGraph,0);

// create a new line in the graph
api.Createline (hGraph, hAxis, signal.Instance);

// obtain Y axis in the second graph
hAxisFFT:= api.GetYAxis (hGraphFFT,O0);

// create a new line in the spectrum graph
api.Createline (hGraphFFT, hAxisFFT, dstl.Instance);

// normalize graphs
api.NormalizeGraph (hGraph) ;
api.NormalizeGraph (hGraphFFT) ;

Refresh;
end;
end; // with
end.

75

WinPOS. Programmer’s Guide

The following sample is a program generating a non-standard variant of express
report. In the cycle USML or MERA file which parameters are displayed on the
pages of 3x3 graph is processed, new scale is established on Y axis allowing
estimation of the initial parameter levels of the set file.

// Sample 2.
// Express report generation program
program Express;

uses
Forms,
Winpos ole TLB in '../DelphiCommon/Winpos_ole TLB.pas',
PosBase in '../DelphiCommon/PosBase.pas';
var FileName : string;
signal : IWPSignal;
usml : IWPUSML;
api IWPGraphs;

hPage, hGraph, hAxis, hLine : Integer;
i, j, nGr, nPg : Integer;
range, min, max : Double;

const nVer : Integer = 3;
const nHor : Integer = 3;

begin
Application.Initialize;

// WINPOS is defined and initialized in the POSBase.pas module
with WINPOS do
begin

// open USML by standard WinPOS dialog

FileName:= USMLDialog();

if fileName<>'' then // if file is selected
begin
// obtain access to Winpos graph subsystem
api:= GraphAPI as IWPGraphs;

usml:= LoadUsml (fileName) as IWPUSML; //load USML

// we get to new page creation (see below)
nGr:= nHor*nVer;
nPg:= 0;
for i:=0 to usml.ParamCount-1 do
begin
// now we can take a signal by its number in the file
signal:= usml.Parameter (i) as IWPSignal;
if (nGr = nHor*nVer) then
begin

76

Appendix

. Samples

// create a new page for graphs
hPage:= api.CreatePage;

// set 3x3
api.SetPageDim(hPage, PAGE DM TABLE, nVer, nHor);

for j:=2 to nHor*nVer do
api.CreateGraph (hPage) ;

Inc (nPg) ;
nGr:= 0;
end;

hGraph:= api.GetGraph (hPage, nGr);
// obtain Y axis
hAxis:= api.GetYAxis (hGraph,O0) ;

// create a new line in graph
api.Createline (hGraph, hAxis, signal.Instance);

// normalize graph
api.NormalizeGraph (hGraph) ;

range:= signal.MaxY - signal.MinY;
max:= signal.MaxY + range*10;
min:= signal.MinY - range*10;

api.SetYAxisMinMax (hAxis, min, max);

Inc (nGr) ;

end;

end;

Refresh;

end;
end.

77

Index of methods

IWINPOS ... 18
AddTextInLogcvvvvvvveverereenennnes 22
CloseFile........coocoeviiiiiieeiecce 27
CreateMenultem..........cccceennee. 24
CreateSignal.......c..cccoveeiierennnen. 19
CreateSignalXYcccccoieenennn. 19
CreatetoolbarButton................... 23
CreateToolbarNcccoccvvvennee. 23
DebugPrint........cccooiiiiiie, 29
DebugPrintLn...............cccooel 29
DOEvVeNntsccccccoviiiieeieiiinnns 22
FileOpenccccceeeeeiiieeiiecceene 26
Getintervalccccooveeeiiinne 20
GetNode ... 21
GetObject ... 21
GetOversampled...........ccceeennnee. 20
GraphAPl ... 20
LinK e 21
LoadSignal..........ccooocuvvvvieeeeennns 18
LoadUSML......cccceviiereeiieeeenen 18
MainWndcccooiiiiiieeee 22
OpenFile ... 27
Print ..o 26
PrintPreviewcccooceiiiiiiis 26
ProgressFinish.........cccccceeinneeen. 25
ProgressStart.........cccccovvieinneenn. 25
ProgressStep.......cccocvveeveeeiennns 25
ReadByte.......ccccceviviii 28
ReadDouble...........ccccveeieieinnniis 28
ReadlLong......ccccceiviiiiiiiieieeens 28
ReadWordcccoooiiiiiiiiiiis 28
Refresh ... 22
RegisterCommand............c......... 22
RegisterImpEXpccoevvveeviinenn. 24
Savelmageccocccveeeeeiiciiiieeeee, 25
SaveSignalcccccceeeeiiiiiiiiene. 19
SaveUSMLoocceveiiieee e 18
SeekFile.....ooovieeiieee 27
SelectedGraph.........ccccevvevennen. 18
SelectedSignal.........ccccceevveennen. 18
ShowToolbarcccccoovciiieenennn. 23
ToolbarSetButtonStyle................ 23
UninK. oo 21
USMLDIalogccoevcuvvviieeeeeninns 21

Index of methods

WriteByteoooviiiiiieiiiiieeee 28
WriteDoublecccccoooiiiinee. 28
AT 101 o T g Lo [N 28
WriteWordccoeeeeieeiiiiee. 28
IWPEXPOrt.....cooe 53
AddSignal.......cccoecviiiiiieen 53
SAVE ... 53
IWPGraphsccocoeveviiiiiiiince 29
ActiveGraphccoccvviieiinnnenn. 35
ActiveGraphPage..........cccc......... 35
AddCommentccceeveeerinenn. 38
AddLabel........ccceeviiiiiiin 38
CreateGraphcccccoeecvvneenen. 30
CreateLinecccccceeeiiiiiieennenn. 31
CreatePage.........cccocoeeiviiennnnen. 30
CreateYAXISvvvveeeeeiiiiiiieeen. 30
DestroyGraph........ccccceeviiiiennnen. 30
DestroyLing.........ccoccvvviveeeeeinnns 31
DestroyPageccccceeeeeeee. 30
DestroyYAXISccoeviuvieeieeeeeies 30
Folder2Graphs.........cccccceeeeeennnns 35
Folder2GraphsRecursive 35
GetAXisOPt......cccvvirieeeeiee e 37
GetGraph ..o, 32
GetGraphCount..........cccccveeeeennn. 31
GetLineoooviiiiiieeeee 32
GetLineCount..........ccceevirennnnen. 32
GetPage.......cccooceveeeeeiiiiieeee 32
GetPageCountcccceeveveennnee. 31
GetPageRectccceevvieennnen. 33
GetSignalccocveviiieiiiiiee, 33
GetXCursorPos..........cccueeeeeenn. 33
GetXMinMaxccceevveciiieennennn. 34
GetYAXISoooeeeieieceeeee e 32
GetYAxisCountcceevvevennnen. 31
GetYAxisMinMax........cccccveenee. 34
Invalidate.........ccccooiiiiiiiinnins 35
LoadSessioncccccccevevvieerenee. 39
Locateoocuueieiieeeeeeeee e 36
NormalizeGraph.........cccccvevnnee. 35
SaveSessionccccevvciiiieenenn. 39
SetAXiSOPLccccvvviriieeeiee e 37
SetGraphOpt.....ccccceeevveviieenenn. 36
SetLineOpt......ccccevveeiiiiiiieee. 37

WinPOS. Programmer’s Guide

SetPageDim........cccccceeeeveiinnnennn. 34
SetPageOpt.......cccovevveeiiiiiiee. 36
SetPageRect.......cccccoveveeiienne 33
SetXCursorPosccccccoeeunnneee. 33
SetXMinMaX......ccccceeveeviinrnnnnnnnns 34
SetYAxisMinMax..........ccccvvvvnnee 34
ShowCursorccccceveeeeeiiineennn. 33
IWPIMPOrt ..o 52
CloSE ... 52
GetPreviewText.......ccccceeeeennneee. 53
GetSignalccoeecviiieeeee 52
OPeN ... 52
IWPNOdE.....oooiiiiieeiieeeeee e 46
AbsolutePath.......c.ccccoevevei. 47
Al e 49
ChildCountcccvvveeiieciien. 47
GetNode....ooevieiiiiiiiieee e, 49
GetReferenceType.........cc.uu..... 48
Instance..........cccvevvveveviviiiiiiiiinnns 47
1104 311 o 48
ISDirectorycccceeeeeeiiiiiiieee. 47
LiNK coeeiee e 48
N F= T 41 Y 46
Reference........ccccvvvvvvvvvvvvvvnnnnnns 47
ReletivePath.........cccccooiinnn. 47
[0 o | 47
UNnK ..ooeeieeeeee 48
IWPOperatorccccvveeveeeeeeinnns 44
L (o] 45
EXEC ..o, 44,55
FullName.........cccccvvvivvviiiniiiiinnns 44
getProperty.......ccooviiiiiiiie, 45
getPropertySet ..., 45
getPropertyValues...................... 46
InStance..........cccvvvvevevviiiiiiiiiinnnns 44
loadPropertiesccccccvvvvvvnnnnns 46
MSQErOr ..o 45
N F= T 41 Y 44
NDSt. .o 44
NSIC.uuiii e 44
setProperty.......ccccoceiniiiiinenn. 45
SetupDIg ...ooveeiieeeeee 46
IWPPIUGINovviiiieieiiieeeee e 51
ConNECt......cevieiieiiiiieeeeeeeee, 51
Disconnectovvvevevevevvvnnnnnnns 51
NotifyPlugincccccoovveeiiiiienne. 51

80

IWPSIignal.......cccocevieiiiiiiieee e, 39
Characteristic........cccceeeveeecinnnnnen. 40
Comment.....cccoeeeeeeeeens 40
DeltaX....oooeeeeeiiiieeeeeeeeeen 39
GEetX e 41
GEtY e 41
GetY X 42
INAEXOf ... 41
INStance.........ceeeveveeeeeeeeeeeeeeeeeenns 41
KO e 41
KT e 41
MaxX ... 40
MaXY e 40
MINX Lo 40
MiINY e 40
NameXccooovviiiiieeeeeeeeen, 40
[N F=T0 1) 40
SetXo 42
SetY 42
SIZE e 39
SNameccccveveei 40
StartX .o 39

IWPUSML.....oovviiiiieieeeeeeeeeeeveeeeeieens 42
AddParameterccooovvvunnnn. 43
Date.....eeeeiiiiiieeeee 43
DeleteParameter 43
FileNameccccccvveeeeeiiiiiiinn. 42
FileSaveoueeveveeeeeeeeeeeeeeiennnnns 43
InstanCe........cooovvveveeeeeeiiinn. 43
NamMe.....ccoeeeeeeeieeieeeeeeeeee 43
ParamCountccccoeeeviviivinnnnnn... 42
Parameter.........ccccceeeeeeeiiiiinnnnnnn. 43
TeSt e, 43

RunAutoCorel..........cevveeveeeeeeeeennnnns 65

RUNCONEroevvveveveveveveeeeeeeveeieiaans 58

RunComplexFFTcccovieeeeiennns 58

RunCrossCorel..........cuveeeeeeeeeeennnnnes 66

RunCrossFFToeveeeiieiiiieeeee, 58

(2 {0 a1 | RN 62

RUNFFT oo 57

RunFIRFilteringccccovcieeeniieenn. 60

RunFuncTransfer........ccccccvvevevevenee. 59

RunlIRFiltering..........cevvvvveveieieinnnnnns 60

Runintegral.........cccccoiiiiiieis 62

RUNPRYV ..o 65

RunResamplingccoocvveeiineenn. 63

